The Minimum Number of Nonnegative Edges in Hypergraphs

نویسندگان

  • Hao Huang
  • Benny Sudakov
چکیده

An r-unform n-vertex hypergraph H is said to have the Manickam-Miklós-Singhi (MMS) property if for every assignment of weights to its vertices with nonnegative sum, the number of edges whose total weight is nonnegative is at least the minimum degree of H. In this paper we show that for n > 10r, every r-uniform n-vertex hypergraph with equal codegrees has the MMS property, and the bound on n is essentially tight up to a constant factor. This result has two immediate corollaries. First it shows that every set of n > 10k real numbers with nonnegative sum has at least ( n−1 k−1 ) nonnegative k-sums, verifying the Manickam-Miklós-Singhi conjecture for this range. More importantly, it implies the vector space Manickam-Miklós-Singhi conjecture which states that for n ≥ 4k and any weighting on the 1-dimensional subspaces of Fq with nonnegative sum, the number of nonnegative k-dimensional subspaces is at least [ n−1 k−1 ] q . We also discuss two additional generalizations, which can be regarded as analogues of the Erdős-Ko-Rado theorem on k-intersecting families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow connection for some families of hypergraphs

An edge-coloured path in a graph is rainbow if its edges have distinct colours. The rainbow connection number of a connected graph G, denoted by rc(G), is the minimum number of colours required to colour the edges of G so that any two vertices of G are connected by a rainbow path. The function rc(G) was first introduced by Chartrand et al. [Math. Bohem., 133 (2008), pp. 85-98], and has since at...

متن کامل

Nonnegative signed total Roman domination in graphs

‎Let $G$ be a finite and simple graph with vertex set $V(G)$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph $G$ is a function $f:V(G)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N(v)}f(x)ge 0$ for each‎ ‎$vin V(G)$‎, ‎where $N(v)$ is the open neighborhood of $v$‎, ‎and (ii) every vertex $u$ for which‎ ‎$f(u...

متن کامل

Covering Non-uniform Hypergraphs

A subset of the vertices in a hypergraph is a cover if it intersects every edge. Let τ(H) denote the cardinality of a minimum cover in the hypergraph H , and let us denote by g(n) the maximum of τ(H) taken over all hypergraphs H with n vertices and with no two hyperedges of the same size. We show that g(n) < 1.98 √ n(1 + o(1)). A special case corresponds to an old problem of Erdős asking the ma...

متن کامل

Strongly polynomial bounds for multiobjective and parametric global minimum cuts in graphs and hypergraphs

We consider multiobjective and parametric versions of the global minimum cut problem in undirected graphs and bounded-rank hypergraphs with multiple edge cost functions. For a fixed number of edge cost functions, we show that the total number of supported non-dominated (SND) cuts is bounded by a polynomial in the numbers of nodes and edges, i.e., is strongly polynomial. This bound also applies ...

متن کامل

A Fast Algorithm for Covering Rectangular Orthogonal Polygons with a Minimum Number of r-Stars

Introduction This paper presents an algorithm for covering orthogonal polygons with minimal number of guards. This idea examines the minimum number of guards for orthogonal simple polygons (without holes) for all scenarios and can also find a rectangular area for each guards. We consider the problem of covering orthogonal polygons with a minimum number of r-stars. In each orthogonal polygon P,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014